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Dynamics near the glass transition in two-dimensional 
polymer melts: a Monte Carlo simulation study 
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Republic of Germany 
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. 

Ahtract. TBe glass pansition in a laaice model (bond-Rumation model) of a dense 
dimensional polymer melt has been studied using Ihe Monte Carlo technique. Temperatwe is 
inwduced in this model by associating energies with the bonds connecting the monomers in 
the chains. Thk creates competition behvcen the energetic and geomemc constraints Withiin 
the system at low temperatures and the system t e m e s  frozen The frozen monomers and &- 
persistence of such states are investigated in terms of an appropriately defined aumcorrelation 
function. Atrention has been paid to the various relaxation processes at different length scales In 
particular, the global relaxation by the diffusion of the polymers. the Rouse relaxation at $e d e  
of the chain length and the relaxation of the above-mentioned autmorrelation function involving 
the frozen monomers hive been studied The sjwtem is equilibriated at various temperatures 
down to T = 0.22 K and the results lhus mmspond to those in the limit of an infinitely slow 
cooling rate. No phase transition is observed in the tempekm range studied. On~alllengIJI 
scales the relaxation times exhibit a crossover from an Anhenius behaviour at high tempadhlns 
to a behaviour closely fitted to the form T - exp(A/T*) at low temperatures, where A is a 
constant independent of the relaxation processes. The i n w e  of the r e l a d o n  times does not 
seem to be fast enough to explain a finite-temperature transition observed on quenching the 
system. 

1. Introduction 

Although much experimental and theoretical work has been carried out in order to 
understand the physical phenomenon behind the glass transition [l-31, it still remains 
highly controversial whether the transition can be characterized as a thermodynamic phase 
transition. A characteristic feature of the glass transition is the sharp rise of the transport 
coefficients, such as viscosity, inverse diffusion constant or relaxation times, in a narrow 
temperature range near the transition temperature T,. This sharp rise, which is often fitted 
by the Vogel-Fulcher law [4], makes the glass transition very difficult to study. In most 
experiments and computer simulations the time scale is much smaller than the intrinsic 
relaxation time of the glass former and the system rapidly falls out of equilibrium. Hence, 
the study of any underlying thermodynamic transition, if there is one, is blurred by the 
nonequilibrium effects close to T, and becomes almost impossible. 

There have been many attempts (see [5,6] and references therein) to search for the 
development of a structural order near the glass transition comparable to that near a second- 
order phase transition point [7]. However, none of the attempts have been successful up 
to now, which shows that the order in a glass, if there is any, is much more subtle and 
hidden than that of a conventional phase transition. According to the modecoupling theory 
[31 of the glass transition, there may not be any growing static correlations as the transition 
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is approached, the overall structure of the glass former relaxes to a glassy phase with a 
drastic slowing down of the relaxation processes. A major prediction of the theory is that 
the dynamical correlations are completely decoupled from any static correlations near the 
transition (it is worth mentioning that the transition temperature in the modecoupling theory 
is situated well above the calorimetric glass transition temperature). On the other hand, 
in spin glasses [8] the slowing down is always linked to the growth of static correlations 
related to the Edwards-Anderson (EA) spin-glass order parameter, and this has been observed 
experimentally by the analysis of a (diverging) static non-linear susceptibility. While it is 
believed [8] that the Ising spin glass in d = 3 dimensions does have an underlying static 
phase transition at a nonzero freezing temperature, other models such as isotropic spin 
glasses are believed to have a static phase transition at zero temperature only. Although in 
these latter systems the static length scale (meaning glass-like correlations) diverges at zero 
temperature only, the relaxation times become very large at much higher temperatures and 
the system falls out of equilibrium at some ‘dynamic’ freezing temperature. This makes the 
observable glass transition in isotropic spin glasses a purely dynamical phenomenon. In case 
of the structural glass transition of undercooled fluids, the situation is more difficult since 
in this case it is not obvious which t y p  of static correlation one should look for. Recent 
molecular-dynamics simulation studies [6] of density and bond-angle correlation functions 
on a Lennard-Jones mixture have failed to see any growth of glass-like correlations even 
in the region of non-Anhenius slowing down. But it must also be emphasized that the 
time scale accessible to such molecular-dynamics studies [5,6] is very short, and in order 
to equilibrate the systems properly a very slow cooling is required: otherwise, if one cools 
the system too fast, both static [9] and dynamic [lo] correlations are strongly suppressed. 

Therefore we do not consider the issue of a growing static length underlying the glass 
transition as easy to settle. In the present paper, we approach the problem indirectly 
focusing attention on the dynamics near the glass transition. Our model system is a very 
simplified lattice model of a two-dimensional polymer melt. Unlike previous studies [ 11,121 
of the same model we make a great effort to equilibrate the system at all temperatures 
that are studied. Thus we probe the glass transition of an undercooled polymer melt in 
thermal equilibrium. Very low temperatures are inaccessible because equilibrium cannot 
be established within the available computer time. We have been able to go down to the 
temperature T = 0.22 K. There are many length scales in the system and we have studied 
suitable dynamical correlation functions and the corresponding relaxation behaviours at 
these different length scales. Our results are compatible with a gradual freezing in; a 
thermodynamic glass transition does not occur at nonzero temperatures. But the divergence 
of the relaxation times seems to be stronger than the Arrhenius law, namely r - exp(A/T2) 
as T + 0, where the constant A is independent of the type of quantity that is being studied. 

2. The model and simulation 

Our method of simulation is similar to that used by Witbnann et a1 [ I l l  in order to study 
the glass transition in polymer melts. We use the bond-fluctuation model 1131 on a square 
lattice, where a monomer is made up of a unit cell of the lattice, occupying four lattice 
positions, and the polymer chains consist of a number N of such monomers connected 
by bond vectors. The polymer chains are self- and mutually avoiding, so that no two 
monomers occupy the same position on the lattice and no two bonds cut each other. The 
lengths of the bond vectors connecting the monomers are restricted to lie in the range from 
L(k2,O) = L(0, f2) = 2 to L(f3, f2) = L(k2, f3) = fi, where (x ,  y) in the symbol 
L(x,  y) stand for the x and the y components of the bond of length L which are measured 
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in units of the lattice spacing. The smallest length guarantees the local self-avoidance of the 
monomers and the selected value for the largest length prevents the chains from crossing 
each other, even in the course of their motion. The selection of the bonds allows us to have 
36 bond vectors of six different lengths (see, e.g., [ll]) and a rich bond-angle spectrum 
where the angle between two successive bonds can have 41 different values. This makes 
the model more realistic and much closer to off-lattice models. 

In order to study the glass transition in this model we have followed [ll] and introduced 
the energy 

(1) 

with the bond vector b which depends only on the length L(x,  y )  of the bond. We chose 
€0 = 1/(2 - and LO = d8, so that 0 < eb 4 1 for any bond b and the bonds 
L(rt3,  & I )  or L ( f 1 ,  f3) of length L = f i  have the minimum energy which is zero. The 
prefactor €0 sets the scale for the temperature (Boltzmann's constant is unity). 

In the course of the Monte Carlo simulation a monomer is selected at random and a 
move is attempted by one lattice spacing in one of the randomly chosen directions h, +y 
with a transition probability 

*b = E O ( L ( X ,  Y) - LO)* 

exp(-SH/ksT) if SH < o 
1 otherwise 

where SH is the difference in energy between the initial polymer configuration and the final 
one resulting from the displacement of the monomer. The move is accepted if the condition 
of self-avoidance is satisfied (i.e., the sites in he jump direction are empty) and the new 
bond vectors still belong to the allowed set of bond vectors as has been mentioned before 
(see figure 1). 

. . . . . .  
:- 

. . . .  

. . . . . .  
Figure 1. Illustration of Ihe bond-fluctuation model on a square lanice. A monomer is made of 
font lattice points of an elementary plaque@ and the m w s  indicate the bond vectors connectiog 
the monomers. In the hopping process a monomer jumps from a plaquetle to a neighbouring 
one if the two lattice sites along the jump direction are free This is shown for the monomer B 
which has for example the lanice pinu highlighted by theheopen circles free to iu  left If the 
monomer B moves to the lee  m course of random hopping. sites 1 ind 2 will be blocked and 
sites 3 and 4 will be free. For this move the new bond vectors are shown by the open m w s .  

As the temperature is lowered, the energy of the melt is reduced by releasing the energy 
out of the bonds. The bonds stretch out to attain the minimum energy (see equation (1)) and 
such a stretched bond blocks a site of a plaquette of the lattice which becomes inaccessible 
to a monomer. So, the free space where a monomer can jump reduces with lowering of 
@e temperature. If the density of the monomers q5 is sufficiently high, the geometrical 
constraints will suppress the tendency of the melt to go to the minimum-energy state at 
low temperatures. In addition, if the chain length (degree of polymerization N )  is not 
too small, a typical configuration of the melt will have the chains circling round each 
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other (in two dimensions chain entanglement is absent) and such a state will have an 
enormous relaxation time at low temperatures. The system cannot satisfy both the energetic 
and geometric conditions simultaneously, giving rise to ‘frustration’ and this together with 
randomness exhibits the glassy behaviour at low temperatures when the configuration Of 

the melt becomes frozen (at least in the time scale of the simulation). Thus, we see that in 
order to obtain the glass transition we need long chains and sufficiently high density of the 
monomers in addition to the bond energies. What ‘sufficiently high’ means in this context 
was discussed in [ 1 I] and it found that a possible choice was N = 10 and q5 = 0.8. With this 
choice, it was shown [ 111 that even with a slow cooling, the system exhibits a glass nansition 
at low temperatures. Moreover, this value of N ensures the expected Rouse dynmics of 
the chains in the athermal limit. Square lattices of size 100 x 100 with periodic boundaty 
conditions are used throughout the simulation and 64 statistically independent systems of the 
same kind are simulated in parallel (involving 12 800 monomers) to obtain a good accuracy. 
A highly optimized version of the bond-fluctuation model suitably designed [I41 for use OR 
a vector supercomputer has been used. In what follows, the time unit is always given in 
terms of one attempted move per monomer or MCS (Monte Carlo step). 

The starting point of our simulation is the stacking of the polymers onto the lattice in a 
completely random way and it is very difficult to achieve this. The problem is tackled by 
filling the lattice with ordered ahays of chains and the system is then relaxed in the athermal 
condition until the chains are moved for a period of several Rouse times (see, e.g., [IB).  
This takes typi&lly -10’ MCS for our system. Cooling of the system (which is carried out 
at constant volume) is accomplished by lowering the temperature with a constant quench 
rate y :  

B W  = BsYf (3) 

where B is the inverse temperature and f is the time measured in MCS. In our simulation the 
quenching rate is 4 x lo-’ MCS-’ and we have gone to the lowest temperature T,. = I/Br 
= 0.01 in 2.5 x io5 MCS. 

In the cooling process configurations at several temperatures are stored. They are used 
as starting states for long canonical runs at the respective temperatures in order to equilibrate 
the melt. During these runs various quantities are monitored and studied, which will be 
discussed in the next section. In this respect there is an important distinction between our 
simulation results and those of Wittmann er al [ll] where at low temperatures averages 
were taken on unrelaxed configurations which hence were not in equilibrium. 

3. ’Ikansport and relaxation 

In order to illustrate the effect of the chosen Hamiltonian on the state of the melt during 
the cooling process, we show in figure 2 the variation of the average bond energy cb with 
temperature in our system. The averaging is performed over the bonds in all the polymers 
and configurations. We see that cb initially reduces with temperature, but instead of going 
to zero, which represents the ground state of the bond energies, it levels off in a narrow 
temperature range around T - 0. to a value -0.15. It shows that the system becomes 
locked to a state whereupon any further lowering of temperature does not influence the 
distribution of the bond vectors among the energy levels. This ‘locked’ state represents the 
glassy state whereas the high-temperature state (T >> O.l), where the average bond energy 
can still relax with temperature, represents the liquid state. The non-zero value of the mean 
bond energy in the glassy region exemplifies the effect of geometrical frustration: the bonds 
cannot all go to the ground state simultaneously. If one compares the energy value of the 
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low-temperature glassy phase, i.e., eb N 0.15 with that of the corresponding system in 11 11 
one finds that the energy value in this simulation is higher. This can be explained by the fact 
that we are working with a cooling rate that is one order of magnitude faster than thaf used 
in [l 11. However, the smaller the cooling rate is, the more time the system gets to relax and 
thus the more bonds succeed in reaching the ground state. Therefore the residual energy in 
the low-temperature phase has to be larger the faster the quench rate is, a result which has 
also been obtained and extensively analysed for the glass transition in the three-dimensional 
bond-fluctuation model [lo]. 

. .  . 0 -  , 0.35 1 

0 0.2 0.4 . 0.6 0.8 1 

T 
Figure 2. The mean bond energy cb as a function of the tempram 7 during the cooling 
pmfeSS. 

The main feature of the glass "sition is the drastic slowing down of structural 
relaxation processes which eventually leads to a total arrest of the dynamics in the system. In 
Monte Carlo studies there is no microscopic dynamics in the sense of equations of motions 
derived from a Hamiltonian; it is the hopping that gives'rise to a stochastic dynamics in the 
system. We follow Camesin and Kremer [13] to investigate the dynamics in the melt and 
measure $I('). the mean square displacement of the monomers with time: g&), the mean 
square displacement of the monomers in the centre-of-mass system and g3(t), the mean 
square displacement of the centre-of-mass of the polymers. The behaviour; of these three 
quantities are shown in figure 3 60th in the athermal limit and at 7' = 0.22 K. At early times, 
we find that 830) is very small and &(t)  'and g2( t )  are almost the same. With time, g3@) 
develops and ultimately coincides with g l ( t )  while g&) becomes constant with time. The 
melt can then be considered to have attained the diffusive limit where the chains behave 
like a single object and diffuse like a Brownian particle. This feature is prominent in the 
athermal melt-while at low temperature there is a big jump in the time scale as can be seen 
in figure 3(b). The behaviour of these g functions in connection with Rouse dynamics has 
been discussed in detail in [13]. 

At sufficiently large times g , ( r )  0: ,Q(c) 0: t, so that the polymers behave like Brownian 
particles. The diffusion constant D of the polymers can then be related to the infinite time 
limit of the relaxation function g3(f), as (in two dimensions) 

- 

D = lim [g3(t)/4t]. 
t-m (4) 



5736 P Ray er ai 

10 

Is 
s . .- 
0 

1 ;  

91 
92 + 

g3 0 

T 

e +  

n 

n (b)  

In figure 4, g3(t)/4r is plotted against 1/t in the logarithmic scale. The curves attain 
constant values at large times which increase with the lowering of the temperature. The 
diffusion constant D is approximated by this constant value of g3(t)/4f. At lower 
temperatures, the curves seem to have attained the plateau at t lo6 MCS and lower 
values of D cannot entirely be ruled out. Figure 5 shows I/ln(D./D) against T, where 
0, is the diffusion coefficient in the athermal limit. The low-temperature data do not 
span a large temperature range and can be simultaneously fitted to the Vogel-Fulcher law 
D o( D,exp[b/(T - TvF)], with Q = 1.76 and the Vogel-Fulcher temperature TVF = 0.09, 
and to tine form D o[ D.exp(n/T*) with b = 1.76. The latter fitting seems to be more 
convincing, which shows no sign of any finite-temperature transition. 

At any temperature the relaxation time 70 corresponding to this global diffusive motion 
can be obtained by arguing that it is the time needed for the polymers to diffuse to a 
distance of the average end-to-end distance REE (the largest length scale in the system) of 
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o.ooo1 0 -  : 
0 

I 

/ I ,...__.._..... 

0 0.1 0.2 0.3 0.4 0.5 0.6 
T 

Figure 5. liIn(D,/D) is plotted against T. The low-temperamre data are fitted to the form 
D - D.exp[b/(T - TF)] (the full curve) and Lo D - Daexp(a/T2) (the dotted curve). We 
have taken a = 0.1406, TM = 0.093 and b = 1.76. 

the polymers at that temperature [IS, 161. This gives 

SO = (&)/4D 
where. (m) denotes the averaging over all the polymers in the system. In figure 6, I/lnsD 
is plotted against T. At high temperatures, the behaviour of TO is of Arrhenius type but 
the low-temperature data can be fitted to a form SD - exp[A/T2] (Bbsler showed [171 
that the. viscosity data for some supercooled liquids obey this form), where A Y 0.18. The 
crossover temperature between the two relaxation regimes is around -0.3 K. 

The value o f t  where g&) cuts g3(f) (see figure 3) provides a measure of the Rouse 
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0 2  0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 
T 

Figure 6. l/lnrD is p l o w  against T. "he data are fined to the Arrhenius law (the full curve) 
and lo the form r D  - exp(A/T') with A = 0.18 (bmken curve). 

relaxation time rR 1161. rR is the relaxation time associated with the rotational motion 
of the polymers and can be defined as the longest relaxation time associated with the 
autocorrelation function of the average end-to-end distance of the polymers 1151. TR is 
found to rise sharply as the temperature is lowered. Figure 7 shows the behaviour of 
l f l n r ~  with T for our system. We find that the behaviour of TR is very similar to that 
of TO. The high-temperature Arrhenius behaviour crosses over at around T - 0.3 to the 
rR - exp[B/T*] behaviour at low temperatures, with B ~r 0.19. 

0.09 - 

0.08 - 

02 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 
T 

Figure 7. Inn- is plotsd against 7. Ihe data are fined to the Arrhenius law (the full curve) 
and to the form I D  - exp(B/T2) with 8 = 0.19 (the broken curve). 

Information on the dynamics on the local scale of the monomers is conveniently 
extracted from the autocorrelation function defined in the following way. We associate a 
lattice-gas variable si with all monomers i. si0) = 1 for the monomers which are completely 
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blocked at time so (in terms of MCS) whereasfor all others si@) = -1. We measure the 
autocorrelation 

(6) 
where ( D ) ~  denotes the averaging,over the monomers and the time to. q ( f )  is very much 
similar to the EA order parameter in spin-glass systems [8]. The initial time fo should 
be so chosen that the system is relaxed at least on the scale of the individual monomers. 
We chose to Y rR, as the relaxation at the scale of the monomers is much faster than 
the Rouse  relaxation^ of the chains. q(0) is trivially unity by  definition.^ For f + CO, 

q ( f )  -+ mo = (si):. where is the statistical-mechanics average. It is to be noted that 
mo # 0 since in the dense melt the probability of finding a monomei to be blocked is much 
higher than to find it otherwise. Also in our model the value of mo depends on temperature, 
as with the lowering of temperature the polymers swell out and the volume available to the 
monomers becomes less. 

q( t )  = (Si(tO)Si(tO + t))m 
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I ,_,.... .'. ...... 0.19 I 

0.11 ' I 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 
T 

Figure 9. lnnr is plotted against 7. The dam are fitted 10 the Arrhenius law (the full CUrVe) 
and to the form r~ - exp(C/T2) with C = 0.17 (the broken c w e ) .  

4. Discussion 

We have studied the dynamics in a two-dimensional polymer melt at different temperatures 
and at different scales of the system. The melt is equilibrated at the temperatures studied. 
The equilibrated results correspond to those obtained in the limit of infinitely slow cooling 
rate. The lowest temperature at which the system could be equilibrated is 0.22 K; further 
low-temperature equilibrium configurations are inaccessible within a reasonable computer 
time. The smallest scale in the system is the local scale of the monomers. The dynamics at 
this scale is conveniently extracted from the relaxation of the autocorrelation function q(t) .  
We have also considered the Rouse relaxation which has a scale of the order of the average 
end-to-end distance of the polymers. It can be thought of as the relaxation of the wriggling 
motions of the chains. The largest scale is however associated with the global relaxations 
of the system brought by the diffusion of the chains. We find that though the relaxation 
times of these various relaxations at different scales differ in absolute magnimde (the largest 
relaxation time is associated with the relaxation at the largest scale), their dependence on 
the temperature T is remarkably similar. The relaxation times follow Arrhenius law at high 
temperatures and crossover to the behaviour r - exp(A/T2) at low temperatures. In each 
of the relaxation processes the crossover temperature between the two relaxation regimes 
seems to be the same (-0.3 K) and the value of the constant A, which is a measure of 
the activation energy, is N 0.18 for each of these relaxation processes. The relaxation time 
seen on large length scales hence is essentially the same as that of the local monomeric 
hopping motion! Interestingly this fact that the relaxation characteristics are independent 
of the scale does agree with the corresponding experimental findings ([I81 and references 
therein) in polymer glasses (in three dimensions). 

Another quite general question is the state of the time-temperature superposition 
principle regarding the isotherms in figure 8. The principle suggests that the relaxation 
functions at different temperatures and at long times can be superposable on a single curve 
so that the relaxation functions are not functions of two variables but only a combination of 
both. One could have expected that the natural scales for the time at different temperatures 
are the relaxation times r (T) .  However, figure IO shows that scaling the time by r does 
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Figure 10. The autocodation function $( I )  for different tempeRrmrrs are plotted against I/r 
(in logarihmic scale). The curves splay out systematically at early and late times. 

not lead to the collapse of all the data points to a single GUN% rather they splay out 
systematically at both early and late times. This can be explained by the fact that we have 
determined the relaxation time by using equation (9) and integrating the relaxation function 
over the entire time range. This may involve other relaxation processes. On the other hand, 
figure 11 suggests that the lawtime data are indeed superposable by proper rescaling of the 
time axis. We find that the lower the temperature. the larger is the time zone over which 
the scaling is valid. 

0.4 

0.35 

0.3 

0.25 

E 0.2 

* 0.15 
0.1 

0.05 

0 

Figure 11. The aulammlation iunction +(f) for temperatures T = 0.40,0.30,025.0.23 and 
0.22 K are plotted against I /&  (in lcgarithmic scate) where I, = 130,400. 1160,2260 and 3700 
for the respective temperatures. All the curves allapse on m a single curve at longer times. 
The corresponding relaxation times at lhese temperatures. as determined by equation (9), are r 
= 306.5,657.1, 1562.7.2459.9 and 3563.2 respectively. 
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Our study shows that although fast quenching of the system resuIts in a glass transition 
at a non-zero temperature, in the limit of infinitely slow cooling rate the system only exhibits 
the tendency of a gradual freezing in; a thermodynamic glass transition does not seem to 
occur at non-zero temperatures. The fast increase of the relaxation time over a narrow 
temperature range can be thought of as a result of strong cooperative effects among the 
monomers. However, this increase does not seem to be sufficiently rapid to explain the 
possibility of a non-zero freezing temperature but sufficient enough to show a dynamic 
freezing at a non-zero temperature when the system is cooled fast. The result is similar 
to what has been found in the study of isotropic Spin-glass systems 181. It is to be noted 
that the strong temperature dependence of the form r - exp(A/T2) has been observed 
in supercooled liquids 1171 and in other systems [19] and bas also been discussed in the 
context of the short-range spin glass models [SI. 
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